General decay rate of a weakly dissipative viscoelastic equation with a general damping

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

General Decay of Solutions for a Viscoelastic Equation with Balakrishnan-taylor Damping

Abstract. A viscoelastic equation with Balakrishnan-Taylor damping and nonlinear boundary/interior sources is considered in a bounded domain. Under appropriate assumptions on the relaxation function and with certain initial data and by adopting the perturbed energy method, we establish uniform decay rate of the solution energy in terms of the behavior of the relaxation function, which are not n...

متن کامل

Decay Rate for a Viscoelastic Equation with Strong Damping and Acoustic Boundary Conditions

This paper is concerned with a nonlinear viscoelastic equation with strong damping: ( ) ( ) 0 , d 0, t t tt tt t u u u u g t s u x s s u ρ − ∆ − ∆ + − ∆ − ∆ = ∫ . The objective of the present paper is to provide some results on the long-time behavior to this equation with acoustic boundary conditions. By using the assumptions on the relaxation function due to Tatar [1], we show an arbitrary rat...

متن کامل

Random approximation of a general symmetric equation

In this paper, we prove the Hyers-Ulam stability of the symmetric functionalequation $f(ph_1(x,y))=ph_2(f(x), f(y))$ in random normed spaces. As a consequence, weobtain some random stability results in the sense of Hyers-Ulam-Rassias.

متن کامل

General Decay Rate Estimate for the Energy of a Weak Viscoelastic Equation with an Internal Time-varying Delay Term

In this paper we consider the weak viscoelastic equation with an internal time-varying delay term u tt (x, t)−Δu(x, t)+α(t) t 0 g(t−s)Δu(x, s) ds+a 0 u t (x, t)+a 1 u t (x, t−τ (t)) = 0 in a bounded domain. By introducing suitable energy and Lyapunov functionals, under suitable assumptions, we establish a general decay rate estimate for the energy, which depends on the behavior of both α and g.

متن کامل

Nearly a polynomial decay rate for the dissipative wave equation

The study of stabilization of the linear dissipative wave equation in a bounded domain with Dirichlet boundary condition is now an old problem. The exponential decay rate of the energy was established by Bardos, Lebeau and Rauch [ BLR] under a geometrical hypothesis linked with the geodesics. Furthermore such condition called geometric control condition is almost necessary to get a uniform expo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Opuscula Mathematica

سال: 2020

ISSN: 1232-9274

DOI: 10.7494/opmath.2020.40.6.647